Taylor Table To Derive a Generalized 4^{th} to 6^{th} Order Compact Pade Scheme

T. H. Pulliam

Stanford University

Taylor Tables

1. The generalized form of the equation is given by

$$\left(\frac{\partial u}{\partial x}\right)_{j-1} + \alpha \left(\frac{\partial u}{\partial x}\right)_{j} + \left(\frac{\partial u}{\partial x}\right)_{j+1} - \frac{A}{2\Delta x} \left(-u_{j-1} + u_{j+1}\right) - \frac{B}{4\Delta x} \left(-u_{j-2} + u_{j+2}\right) = er_{t}$$

- 1. The equation is written on terms of the single free coefficients α, A, B which must be determined using the Taylor Table approach as outlined below.
- 2. One goal is to find the value of α, A, B wich results in a 6th Order Scheme
- 3. We can also defind a class of 4^{th} schemes where α is a free parameter and A, B are functions of α

Taylor Table

 $(-1)^6 \frac{1}{6!}$

 $(1)^6 \frac{1}{6!}$

Coefficient Equations

- 1. For Consistency and at least 4^{th} Order Accuracy, the first five columns are set to zero.
- 2. Note because of the skew symmetry of the original equation the odd numbers columns sum exact to 0
- 3. For 6^{th} Order Accuracy we need

$$\alpha + 2 - A - B = 0$$
, $1 - \frac{A}{6} - \frac{2B}{3} = 0$, $2 - \frac{A}{5} - \frac{16B}{5} = 0$ (1)

- 1. Solving we have $\alpha = 3$, $A = \frac{14}{3}$, and $B = \frac{1}{3}$
- 2. Then $er_t = -\frac{1}{180} \Delta x^6 \left(\frac{\partial^7 u}{\partial x^7} \right)_i$

Generalized Scheme

- 1. Instead of requiring a 6^{th} order scheme relax the conditions to allow the sixth column to be non-zero and find A, B as a function of α
- 2. Solving the first two relations for A, B we have $A = \frac{4+2\alpha}{3}$ and $B = \frac{4-\alpha}{3}$
- 3. For $\alpha = 3$:the above 5 point 6^{th} Order Scheme
- 4. For $\alpha = 4$: the 3 point 4^{th} Order Scheme
- 5. For $\alpha \neq 3$: a class of 4^{th} Order Schemes different characteristics.
- 6. In general, $er_t = \Delta x^4 \frac{1}{10} \left(1 \frac{\alpha}{3} \right) \left(\frac{\partial^5 u}{\partial x^5} \right)_i + \Delta x^6 \frac{1}{1260} \left(8 5\alpha \right) \left(\frac{\partial^7 u}{\partial x^7} \right)_i$
- 7. See Note on Modified Wave Number for General Pade Schemes